Acid Catalyzed hyrdation of an alkene (acid and water or H3O+)	markovnikov with possible carbocation
	rearrangement
Addition of HX to an alkene	Carbocation Thermediate H Br Br Adding to Cw/met H's
	Markovnikov, possible carbocation rearrangement
Alcohols to alkyl halides (ROH with HX)	SN2 SN1 SN1 SN1 SN2 SN2 SN2 SN2
Alcohols with PBr3	MECHANISM 13.7 THE REACTION BETWEEN PBr ₃ AND AN ALC Bad leaving group Inversion of stereochemistry if the carbon with OH was chiral because Br- does an S
Alcohols with SOCI2	MECHANISM 13.6 THE REACTION BETWEEN SOCI, AND AN ALCOHOL Bad leaving group SOCI, S

chiral because CI- does an SN2

Alkene with CH2I2 and Zn(Cu)

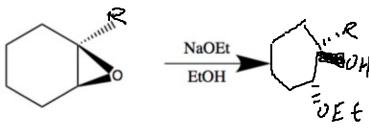
Alkene with CH2N2

Alkene with CHCl3 and Strong Base

$$\begin{array}{c} H \\ C = C \\ CH_3CH_2 \end{array} + \begin{array}{c} CHCI_3 \\ CH_3CH_2 \end{array} + \begin{array}{c} CHCI_3 \\ CH_3CH_2 \end{array}$$

Alkene with KMnO4 (Cold), dilute OH- or 1)OsO4 2)Me2S

Dihydroxylation, syn addition


cuts like ozone but aldehydes become carboxylic acids, one carbon becomes CO2

Alkyne Hydrogenation (3 types)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
Catalytic Hydrogenation (H2, metal)	CH ₁ CH ₂ CH ₃ CH ₃ CH ₄ H H H H H H H CH CH CH CH
E1 Reaction	H-501VPA+ B:
E2 Reaction	E2 Reaction: C-H and C-X bonds break simultaneou the alkene in a single step without inter A cinticoplanar B: C-C C=C + BH C-C X
Epoxide Reacting with Acid	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

₹

ì

Epoxide reacting with base (good nucleophile)

OH will be anti to nucleophile. nucleophile goes to least substituted c

Free Radical Addtion to alkene (HBr, ROOR) Propagation

$$\begin{array}{c} H \\ CH_{5} \\ C \\ C \\ C \\ H \\ CH_{5} \\ CH_$$

radical on the most stable carbon

Free Radical Halogenation (Cl2 or Br2 with heat or light)

Halogenation of an alkene (X2)

anti addition, nucl attacks most subst carbon

Hydroboration 1)BH, THF 2) H2O2, OH-

\bigcirc	^{CH3}	CH1 CH1 W BH2
0H-	who H	Syn & Anti-Mark.

Antimarkovnikov hydration, syn addition

Intermolecular Dehydration of Alcohols (ROH with H2SO4)

NBS with heat or ROOR

$$\nearrow \nearrow \nearrow \nearrow$$

switches Br for H on an allylic or benzyllic carbon

Oxymercuration/Demercuration 1) Hg(OAc)2, H2O 2)NaBH4, OH-

$$\rightarrow$$

Markov hydration, no C+ rearrangement, Could use ROH instead of H2O

Ozonolysis	1)	03.2	Me2S	or	7n
OZUMUNJU	''	002	IVICZO	Oi	411

cuts the double bond and puts O on carbons

Peroxycarboxylic acids (McPBA) or COOOH

Protecting Groups (ROH with TBSCI)

Silyl Ethers

$$R-6H+CI-5i-C$$
 $SIJE^{+}3$
 $SIJE^{+}3$

Sn1 Reaction

Strong	Bases

Synthesis of Alkyne starting from dihalide

Use 2 equivalents of strong base like NaNH2

Synthesis of Alkyne using acytelide ion

William Ether Synthesis RO- with R-LG